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Introduction 

The primary processes of the reversible photochemical 
reaction involving benzoquinone (Q), hydroquinone (H2Q), 
chlorophyll (ChI a), and the ChI a+ cation in different sol­
vent systems has been the subject of numerous investiga­
tions.1-4 The overall reaction may be written 

2 H + + 2(ChI a) + Q *=± 2(ChI a+ ) + H2Q (1) 
dark 

in which ChI a and H2Q act as the electron donor in the 
light and dark reactions, respectively. In this paper we de­
scribe our initial attempt at arriving at reversible photogal­
vanic action derived from photoelectrochemical interactions 
between Pt-ChI a and quinhydrone electrodes. The motiva­
tion of the present work differs from earlier observations of 
photoconductive and photoelectrochemical effects of chlo­
rophyll5-7 and other systems8-11 in that we shall adopt the 
rigorous definition of a galvanic cell in which power is de­
rived from spontaneous chemical reaction between two half-
cells. The light perturbation should lead to photoelectro­
chemical effects that may be generically related to the Bec-
querel effect.8'9 However, the present results may be of spe­
cial interest because of the near-infrared photoactivity of 
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ChI a. Most existing photoelectrochemical cells operate in 
the blue or near-ultraviolet.10-13 

The proposed photogalvanic cell may be written 

Pt, ChI a|Chl a+|LiClO4J (NaOH, NaHC0 3 |H 2 QjQ, Pt (2) 

A B 
Based on the reversible reactions given in (1), one might ex­
pect the ChI a-plated Pt electrode in (2) to develop a nega­
tive photopotential due to the photooxidation of ChI a by Q. 
In the following we report the observed behavior of the ChI 
a-quinhydrone photoelectrochemical cell. Contrary to our 
expectations, a positive photopotential has been observed at 
the ChI a-plated electrode, leading to the somewhat surpris­
ing conclusion that ChI a is in fact reduced by the quinhyd­
rone cell under light conditions. It will be shown that this 
unexpected behavior can be readily accounted for in terms 
of the p-type semiconductor properties6 of hydrated ChI a 
aggregates and of the characteristic photovoltaic behavior 
of binary compound semiconductors.14 

Experimental Section 

The ChI a was extracted from spinach and purified in the usual 
manner.15 The purity of the sample was monitored by the peak po­
sitions and the peak ratio of the blue and red absorption bands of 
ChI a in diethyl ether,15 cyclic voltametric measurements,16 liquid 
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Figure 1. Spectral response of the room-temperature photogalvanic ef­
fect (X) of the ChI a/Q system and the 151 K absorption spectrum 
(....) of a 2 X 1O-5 M ChI a solution in methylcyclohexane:«-pentane 
(1:1). The photocurrent /p was measured across a R = 2 X IfJ4A resis­
tor. The observed photopotential, given by I^R, is positive, indicative of 
a photoreduction current at the Pt-ChI a electrode. 

chromatographic and x-ray photoelectron spectroscopic determi­
nations.17 About 3 X 1014 ChI a molecules were deposited on a Pt 
electrode (~0.2 cm2 in area) by allowing 2 n\ of a 3 X 1O-4 M so­
lution of ChI a in butyronitrile to evaporate on one side of the elec­
trode. The Pt-ChI a electrode was then immersed in an 0.1 M 
aqueous solution of LiClCU. The other half-cell is a ChI a-free Pt 
electrode immersed in a 5 X 10 -3 M aqueous solution of Qif-hQ 
(1:1) in a NaOH-NaHCO3 buffer (pH 10.3). The half-cells were 
separated by a fine glass frit. All sample solutions were rigorously 
degassed through multiple freeze-pump-thaw cycles. The cell was 
assembled and sealed under a N2 atmosphere in a drybox. 

The spectral response of the observed photogalvanic effect was 
measured using a 1000-W tungsten-halogen lamp and a 0.25-m 
Jarrell-Ash monochromator. The spectral distribution of the inci­
dent photon flux (F) in the 400-750-nm wavelength region was de­
termined with a Spectrophysics 40IB power meter. The incident 
source has a maximum Fx value 1.26 X 1013 photons s - 1 cm -2 at X 
600 nm. The corresponding fluxes at 440 and 750 nm were 1.05 
and 3.25 X 1012 photons s - ' cm -2, respectively. The measured 
spectral response of the photocurrent /p was recorded in terms of 
the ratio Ip/Fx. 

Experimental Results and Interpretations 

At pH 10.3 the quinhydrone electrode has a reversible 
redox potential —0.12 V vs. SCE.18 '19 In the presence of 
light, a positive photopotential at the Pt-ChI a electrode is 
observed. In the range of incident fluxes (~101 2-101 4 pho­
tons c m - 2 s _ I ) , this photopotential appears to be a linear 
function of light intensity. The sign of the photopotential, 
indicative of a reduction photocurrent at the Pt-ChI a elec­
trode, rules out the reversible reaction in (1) as the mecha­
nisms underlying the observed photoelectrochemical effects. 

Photogalvanic action is generated under light irradiation 

in the form of an IpR drop across a resistor R with the pho­
tocurrent / p . The time (T P ) it takes to develop / p varies in­
versely with R (Tp ~ 10 s, at R = 2 X 104 Q). When the 
light is switched off, a reverse reaction induces a galvanic 
current opposite in sign to /p . The on-off light cycle thus 
develops an alternating current whose magnitude is propor­
tional to light intensity in the range of incident fluxes em­
ployed. The reversible photogalvanic effect described above 
is observed only when the photon beam is incident on the 
chlorophyll. This effect is not detected when the (ChI a)-
free side of the A electrode is illuminated or when the elec­
trode is illuminated without quinone in the B compartment. 
The observed action spectrum of the photogalvanic effect is 
given in Figure 1. 

It has been shown l5.2°-22 recently that the (room-temper­
ature) red ChI a absorption bands at 665, 678, 695, and 743 
nm are attributable to ChI a-H20 (A665),15-20 '23 (ChI a)2 

(A678),15 '20 (ChI 3-H2O)2 (A700),15-22'24 and (ChI a-
2 H 2 0 ) „ » , (A743),15'20-25'26 respectively. XPS studies17 of 
the O Is binding energies of ChI a - H 2 0 deposits compara­
ble with those employed in the present investigation reveal 
that the aggregation states of ChI a on a metallic surface 
are apparently similar to those in a homogeneous nonpolar 
solution. The / p contribution from wavelengths to the red of 
the 665-nm band (see Figure 1) are suggestive of the role 
played by dimeric and polymeric ChI a - H 2 0 aggregates. 
The observation of significant photocurrents in the 700-nm 
region of the action spectrum is of particular interest be­
cause the corresponding absorption band in nonpolar ChI a 
solutions is only observed at low temperatures due to entro­
py effects.15 The restriction of ChI a and H2O molecules to 
a two-dimensional space significantly reduces the negative 
configuration entropy change of the ChI a-H20 dimeriza-
tion process and leads to a negative free-energy change that 
favors the formation of the A700 species. It appears that 
the above argument may also be applicable to the phe-
nomenological behavior of ChI a molecules in photosynthe­
sis, where it is believed that these molecules are spatially re­
stricted to the interface between protein lipids and lamel­
lae.27*29 It has recently been proposed22-30*32 that (ChI a-
H2O)2 is the 700-nm absorbing photosystem I primary mo­
lecular unit (P700)33 in plant photosynthesis. The signifi­
cant role played by polymeric (A743), as well as dimeric 
(A700) ChI a - H 2 0 aggregates in the present case, is rea­
sonable in view of the aqueous electrolyte solution sur­
rounding the ChI a film. The room-temperature formation 
of a distribution of near-infrared absorbing (in the 700-
750-nm wavelength region) aggregates in chlorophyll emul­
sions and films under excess water conditions has been re­
ported earlier.34'35 

The observed photogalvanic effects can be accounted for 
in terms of the observed photovoltaic properties of semicon­
ductor binary compounds. It has been established14 that the 
photoreaction of an n-type binary compound semiconductor 
leads to a negative photopotential whereas a p-type semi­
conductor can only show a positive photopotential. Under 
illumination the photoactive hydrated ChI a aggregate is 
presumably excited to a charge-transfer state30*32 that may 
be considered to be a binary compound consisting of ChI a+ 

and ChI a.".22 While the molecular details remain unclear, 
we consider the generalized proposal by Williams.14 The 
ChI a - anion may become solvated by the water protons 
and thus localized at the ChI a - H 2 0 phase boundary as the 
bulk of the p-type hydrated ChI a film acquires an excess of 
positive charge that leads to the observed photoreduction 
current at the Pt-QhI a electrode. The result is an accumu­
lation of negative charges in cell A during the light cycle, 
which is apparently responsible for the observed reverse 
dark current when the light is switched off. The above inter-
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pretation appears to provide a reasonable rationalization for 
the observed effects. 

The apparent quantum efficiencies IP/F\ (incident) 
range from about 2.3 X 1O-3 in the red wavelength region 
to about 1.1 X 1O-2 in the blue (see Figure 1). However, 
the actual quantum efficiencies, given by the ratio of elec­
trons released per photon absorbed, are about 2 X 10_1 and 
5 X 10-1 in the red- and blue-wavelength regions, respec­
tively. From reflectance measurements, we estimate about 
1% of the incident flux was absorbed by the chlorophyll. It 
appears reasonable to expect that the reflectance loss can be 
easily remedied by a thicker coat of ChI a on the Pt elec­
trode. 

Discussion 
The photogalvanic cell described above differs funda­

mentally from earlier chlorophyll photocells.5"7 Direct con­
version of photons into electricity has been accomplished in 
the present case. In the work of Tang, Douglas, and Al­
brecht,6,7 the observed photocurrents did not result from 
chemical interactions of the chlorophyll with an electron ac­
ceptor. Instead, these authors have demonstrated that the 
743-nm absorbing chlorophyll sample, a crystalline aggre­
gate of the ChI a dihydrate,20 displays photovoltaic effects 
under proper conditions.6 In the work of Tributsch and Cal­
vin,5 the chlorophyll was engaged in photochemistry, but 
the lack of galvanic separation in their experiments did not 
allow for spontaneous quantum conversion, and an external­
ly applied voltage was used to induce the observed photo-
currents.5 

The /p action spectrum given in Figure 1 contrasts with 
the absorption spectra of ChI a preparations in that the 
blue-red (435 nm/670 nm) intensity ratio (~4.4) of the /p 
spectrum appears to be greatly enhanced over the corre­
sponding peak ratios of ChI a optical absorption. The room-
temperature blue/red peak ratios of ChI a absorption are 
1.30 and 1.52 in diethyl ether and 1:1 methylcyclohexane 
and n-pentane, respectively.15 (See, also, the comparison in 
Figure 1.) The origin of this apparent anomaly is not well 
understood and deserves more detailed future investiga­
tions. The Ip/F\ determinations in the blue- and red-wave­
length regions were encumbered by the weak fluxes of the 
incident source (see Experimental Section). Extended stud­
ies in these laboratories will be concerned with refined tech­
niques for the /p measurements. 

In conclusion, we believe that the results reported above 
are significant for the following reasons, (i) Preliminary 
quantum efficiency measurements demonstrate the feasibil­
ity of efficient red and near-infrared solar conversion by 
chlorophyll in vitro, (ii) The above experimental procedure 
provides a convenient means of investigating ChI a-F^O 
aggregates under ordinary room-temperature conditions. Of 
particular interest is the room-temperature stabilization of 
the A700 aggregate on surfaces. The A700 is be­
lieved1 5'22-24 to be the in vitro analogue of the in vivo pri­
mary molecular adduct P700.33 (iii) It appears that the re­

versible photogalvanic principle based on half-cell ChI a re­
actions can be generalized to electron-donor systems other 
than the quinhydrone electrode. The light-induced charge-
transfer interaction in the A700 (P700) ChI a monohydrate 
dimer, considered to be the primary step in the photosyn-
thetic light reaction,22'30~32 also appears to play a probable 
role in the primary light reaction in the present photogal­
vanic system. In photosynthesis ChI a derives its unique 
function as a photocatalyst from its ability to undergo re­
versible photooxidation and reduction. Many current inves­
tigations have been concerned with the formation of the ChI 
a radical cation in the primary light reaction.22 Our present 
investigation has focused the attention on the electron-ac­
cepting properties. 
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